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We have developed a new technique, which is complementary to
other procedures, that will have wide applicability for generat-
ing new feasible framework structures with defined micro-
porous architectures from the knowledge of only the unit cell
dimensions, constituent elements and by defining forbidden
regions within the unit cell.

There is a considerable incentive for the development of techniques
for the generation and prediction of crystal structures. In some cases
it may be difficult to solve structures from available crystallo-
graphic data; in others the aim may be to generate new structures
with specific topological or other feature. There have been many
successful studies in which inorganic and molecular crystal
structures have been predicted or solved using either a genetic
algorithm (GA) or simulated annealing approach.1–9 The case of
framework structures is of particular interest. Here microporous
structures have been generated on the basis of topological
principles10,11 or by assembling building blocks (SBUs).1 We
advance a different and complementary approach in which
structures are generated corresponding to a predefined pore
architecture. The approach we adopt is an adaptation of one that we
have used previously12 in which we combine GA methods with
lattice energy minimisation techniques.

A GA approach is based on ideas taken from Darwin’s theory of
evolution. A “population” of candidate structures is created; these
may be different random atomic/ionic coordinates. Then, within a
defined environment, competition to “procreate” in the population
is simulated. That is, information from the better candidate
structures of the current population is statistically more likely to be
chosen to create candidate structures for a new population. The new
population then replaces the current population and the process is
repeated. Thus, candidate structures containing “good” features
will prosper and those with “bad” features will diminish such that,
eventually, a candidate structure should evolve which best fits the
target criteria.

In our simulations the dimensions and contents of the unit cell, as
well as the definition of the cost function (used to assess the
“fitness” of the candidate structures), form the environment and a
binary representation of the unknown coordinates forms the basis of
our analogue of DNA. To form the latter, we first define and
number a linear grid, of 2n points, over the unit cell. A unique
concatenated series of binary numbers can be assigned to each
different candidate structure if the ions are restricted to grid points
and the order of the ions is kept fixed. This binary representation,
or series of 0’s and 1’s, the length of which is determined by the
number of unknown coordinates, the required accuracy of the
coordinates and size of the unit cell, is used in the procreation
process. Further details are given in references 9 and 12.

We employ a multistage method that has been shown to be an
efficient method for generating a large range of ionic crystal
structures.12 As before, a different cost function is used in each
stage. A genetic algorithm with a robust cost function, is used in
stage 1 to generate plausible candidate structures, which are
subsequently refined (in stage 2) by minimising the lattice energy
based on the Born model – a more accurate measure of fitness.

Thus, the GA is only required to find an approximate structure that
will relax to a more accurate model.

Following the success of this method in generating dense
structures12 we now address the more challenging case of
microporous materials. We define exclusion zones (EZs – regions
within the unit cell where ions are forbidden), which is necessary
because microporous materials, such as zeolites, are metastable
with respect to their denser parent phase. More importantly, the
procedure also allows us to predefine the size and dimensions of
desired pores, or channels, and to generate stable structures that
correspond to the desired topology.

The GA can of course be used with different sized EZs, which
can be either ellipsoidal (or spherical), elliptical cylinders (chan-
nels, Fig. 1) or planar. EZs can contain, for example, known parts
of layered crystal structures. The EZs were integrated into our
method using two different procedures: directly by using a grid
where no points are within the EZ or indirectly by adapting the
definition of the cost function. In the indirect method, when an ion
is found within the EZ, the candidate structure is heavily penalised
such that it is unlikely to be selected for procreation and so will
vanish from the population. Variations to this method could include
a soft boundary whereby the penalty is weighted with respect to
how deep the ion penetrates into the EZ. When the direct method is
used in the procreation process, the points on the linear grid within
the EZs are not numbered. This has the advantage, compared with
the indirect method of EZs, of reducing the length of the binary
representation of the structure. The disadvantage is that some grid
points may be represented twice (as it is not always possible to have
2m grid points outside the EZ) and the mapping between fractional

Fig. 1 Orthorhombic cell with a, two ellipsoidal channel EZs b, two
cylindrical channel EZs c, the best candidate generated from our GA after
2000 iterations and d, the structure of siliceous zeolite JBW.
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coordinates and the binary representation is more expensive to
compute.

Whether the direct or indirect approach to EZs is more efficient
will depend on the volume of the EZ compared to the unit cell
volume. For the indirect approach, an increase in the EZ volume
will result in more candidate structures being generated with ion(s)
within the EZ. Whereas for the direct approach the number of
different possible candidate structures is reduced as the EZ volume
increases.

The cost function used for stage 2, is the lattice energy created by
the two body potential (Coulomb and short range Buckingham
terms),

(1)

and the three body potential,

(2)

where qi are the formal charges on the ions, rij is the distance
between ions i and j, qijl is the angle ions j and l make about ion i,
and A, r, C, k and q0 are variable parameters, which in the present
case are taken from the set derived by Sanders et al.,13 except that
a rigid ion model is used.

The cost function used in stage 1 (optimisation using the genetic
algorithm) consists of a linear combination of terms,

(3)

where EB, EC, E3 are the lattice energy contributions from the
Buckingham, Coulomb and three body terms given in the previous
equations and Ni is the difference in the expected and calculated
coordination number of ion i. The weighting parameters, lB, lC, l3,
lN were set to 1.0, 0.01, 10.0, and 25.0, respectively, and l0 is
chosen to ensure that the global minimum of the cost function has
a positive value. This cost function was designed such that the
connectivity is correct and the bond angles reasonable for the
structures that prosper in the genetic algorithm and that the
contribution of the Coulomb term was similar to that of the
Buckingham. In particular, the last term of the cost function
penalises any candidate structure where the coordination number
about an ion is wrong, which is important as we must ensure that the
expected number of bond angles are found.

To demonstrate the viability of our approach, we have used the
direct approach to EZs, within our multistage approach, to generate
the siliceous form of Zeolite JBW (Fig. 1d) within the orthorhombic
unit cell (a = 7.93061 Å, b = 7.66355 Å, c = 5.19639 Å)
containing 6 Si4+ cations and 12 O22 anions. The structure of JBW
presents a system of interpenetrating channels. Note, if we were to
make use of asymmetric unit cells, considerably larger systems
could be modelled. For example, 6 unique atoms are required for
the framework of Faujasite, which contains 576 atoms in the full
cell.

We defined four EZs, which reduced the number of grid points
from 643 to 47398. Two EZs are ellipsoidal channels, as shown in
Fig. 1a, where the cross-section of one cylinder has a width that
ranges from 5 to 6 Å and the other from 3 to 4 Å. The other EZs are

cylindrical channels, as shown in Fig. 1b, each with a circular cross-
section, 2 Å radius. The GA used a population of 100 candidate
structures. Other GA parameters were set to values similar† to those
given in reference 12. When the ionic coordinates of the best
candidate from stage 1, shown in Fig. 1c, were relaxed, the
framework structure of JBW, shown in Fig. 1d, was generated in
stage 2. As is typically the case, the improvement in the cost
function for the best candidate structure is quite rapid in the earlier
iterations. In fact there was very little improvement after about the
1350th and none after the 1700th population.

To summarise, we have shown that we can predict framework
structures by adapting our GA/lattice energy procedure that was
previously designed to predict dense ionic structures from the
knowledge of the unit cell dimensions and ionic contents. In the
first stage, exclusion zones – regions of the unit cell where ions are
forbidden – were employed to drive the procedure to specific pore
architectures, which in the case chosen here successfully generates
the structure of JBW. This was the first microporous framework
structure to be successfully generated by our new algorithm. The
generation of other siliceous framework structures is currently in
progress, and to date we have successfully generated Sodalite and
Chabazite. Details of the efficiency of using this direct approach to
exclusion zones, compared with an indirect approach (cost function
includes the exclusion zones in its definition), within a genetic
algorithm will be reported in subsequent publications.
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for useful discussions.
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† Default parameters were chosen except for the crossover probability and
the tournament probability parameters where we used Pc = 0.4 and Pt =
0.8.
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